В треугольнике KNP срединные перпендикуляры к стопонам KN и NP пересекаются в точке S . NS=14см,угол SPK=30 градусов . Найдите расстояние от точки S до стороны PK
Там где прямой угол поставь точку С. Тогда СА=12(нужно поставить точку А), СВ=5( поставить точку В)
Объяснение:
т.К. УГОЛ ПРЯМОЙ ,то он должен опираться на дугу 180.(Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. )Поэтому АВ-диаметр. На диаметре лежит центр окружности точка О.
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Там где прямой угол поставь точку С. Тогда СА=12(нужно поставить точку А), СВ=5( поставить точку В)
Объяснение:
т.К. УГОЛ ПРЯМОЙ ,то он должен опираться на дугу 180.(Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается. )Поэтому АВ-диаметр. На диаметре лежит центр окружности точка О.
Рассмотрим ΔАВС, по т.Пифагора АВ²=СА²+СВ ² ,АВ²=144+25 , АВ=√169, АВ=13.Значит диаметр АВ=13.
Радиус в 2 раза меньше: ОА=ОВ=6,5.
Длина окружности — это произведение числа π и диаметра окружности : π *d=3,14*13=40,82
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.