В треугольнике МКС известно, что МК=КС=18 см. Серединный перпендикуляр к стороне КС пересекает сторону МС в точке А. Найдите МС, если периметр треугольника МАК равен 48 см
Треугольник АВС равносторонний, АВ=ВС=АС, площадьАВС=108*корень3=АС в квадрате*корень3/4, 432*корень3=АВ в квадрате*корень3, АВ=12*корень3,
проводим высоту=медиане=биссектрисе АН на ВС, АН=АС*корень3/2=12*корень3*корень3/2=18, О-центр треугольника-пересечение высот =медиан=биссектрис, КО перпендикуляр к плоскости треугольника=8, проводим КН , треугольник КОН прямоугольный,
ОН=1/3АН (медианы в точке пересечения делятся в отношении 2/1 начиная от вершины), ОН=18/3=6, КН=корень(КО в квадрате+ОН в квадрате)=корень(64+36)=10 - искомое рнасстояние
Правильная треугольная пирамида - это пирамида, в основании которой лежит правильный треугольник, а вершина проецируется в центр основания, то есть боковые грани равны друг другу. Боковая поверхность нашей пирамиды в три раза больше площади основания, значит мы имеем равносторонний тетраэдр. Найдем его сторону по формуле радиуса вписанной в правильный треугольник окружности: Rвпbс = (√3/6)*а. Площадь этой окружности равна π*R² и в нашем случае равна R. Отсюда R = 1/π. Тогда сторона тетраэдра равна: а = (6*√3)/π*3 = (2√3)/π. Формула объема тетраэдра: Vт = (√2/12)*а³ = (√2/12)*[(2√3)/π]³ = (2√6)/π³
проводим высоту=медиане=биссектрисе АН на ВС, АН=АС*корень3/2=12*корень3*корень3/2=18, О-центр треугольника-пересечение высот =медиан=биссектрис, КО перпендикуляр к плоскости треугольника=8, проводим КН , треугольник КОН прямоугольный,
ОН=1/3АН (медианы в точке пересечения делятся в отношении 2/1 начиная от вершины), ОН=18/3=6,
КН=корень(КО в квадрате+ОН в квадрате)=корень(64+36)=10 - искомое рнасстояние