Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
При пересечении двух прямых образуется 4 угла, обозначим через 1,2,3,4 по часовой стрелке.
1) угол 1 + угол 2 не может равняться 70 градуас, т.к. они смежные, значит угол 1+угол 3 = 70 градусов, т.к. эти углы вертикальные, то угол 1 = 70:2=35 градусов. Тогда угол 2 = 180-угол 1 (по свойству смежных углов), угол 2 = 180-35=145 градусов.
ответ: 35 и 145.
2) Пусть угол 1 = 3 угла 2. Так как эти углы смежные, то по свойству смежных углов: угол 1 + угол 2 = 180,
3 угла 2 + угол 2 = 180
4 угла 2 = 180,
угол 2 = 45 градусов.
Тогда угол 1 равен 180-45=135
ответ 45 и 135.
3) угол 1 = угол 2 -35, тогда угол 2 - 35 + угол 2 = 180
2 угла 2 = 215
угол 2 = 107 градусов 30 минут,
угол 1 = 180 градусов - 107 градусов 30 минут = 72 градуса 30 минут
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.