АВСД трапеция. ВС- меньшее основание. АВ = ВС = СД поскольку трапеция равнобокая и ее меньшее основание равно боковой стороне. АС - диагональ. Угол САД = 30 градусов. Это все по условию задачи. Решение. Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА. Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов. Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов. Угол АВС = 180 - 60 = 120 градусов. Поскольку трапеция равнобокая, то угол ВАД = СДА = 60 градусов угол АВС = ВСД = 120 градусов.
Периметр прямоугольника вычисляют по формуле Р = 2(а +b), где a и b - его стороны.
Площадь прямоугольника вычисляют по формуле S = ab, где a и b - его стороны.
По условию Р = 22 см, S = 24 см². Найдем длины сторон прямоугольника.
Пусть одна из сторон прямоугольника х см, тогда вторая сторона прямоугольника будет равна Р : 2 - х = 22 : 2 - х = 11 - х (см). Т.к. площадь прямоугольника равна 24 см², то составим и решим уравнение:
х(11 - х) = 24,
11х - х² - 24 = 0,
-х² + 11х - 24 = 0,
х² - 11х + 24 =0,
D = (-11)² - 4 · 1 · 24 = 121 - 96 = 25; √25 = 5,
х₁ = (11 + 5)/(2 · 1) = 16/2 = 8,
х₂ = (11 - 5)/(2 · 1) = 6/2 = 3.
Значит, если одна из сторон прямоугольника равна 8 см, то вторая будет равна 11 - 8 = 3 (см); если же одна из сторон прямоугольника равна 3 см, то вторая будет равна 11 - 3 = 8 (см).
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.
Периметр прямоугольника вычисляют по формуле Р = 2(а +b), где a и b - его стороны.
Площадь прямоугольника вычисляют по формуле S = ab, где a и b - его стороны.
По условию Р = 22 см, S = 24 см². Найдем длины сторон прямоугольника.
Пусть одна из сторон прямоугольника х см, тогда вторая сторона прямоугольника будет равна Р : 2 - х = 22 : 2 - х = 11 - х (см). Т.к. площадь прямоугольника равна 24 см², то составим и решим уравнение:
х(11 - х) = 24,
11х - х² - 24 = 0,
-х² + 11х - 24 = 0,
х² - 11х + 24 =0,
D = (-11)² - 4 · 1 · 24 = 121 - 96 = 25; √25 = 5,
х₁ = (11 + 5)/(2 · 1) = 16/2 = 8,
х₂ = (11 - 5)/(2 · 1) = 6/2 = 3.
Значит, если одна из сторон прямоугольника равна 8 см, то вторая будет равна 11 - 8 = 3 (см); если же одна из сторон прямоугольника равна 3 см, то вторая будет равна 11 - 3 = 8 (см).
ответ: 3 см и 8 см.