Тупым углом будет являться угол при вершине меньшего основания. Проводим ещё одну высоту. Она будет равна первой высоте, параллельна ей и отсекать вместе с ней на большем основании три отрезка, два из которых равны по 6 см (исходя из равенства треугольников, которые равны по катета и гипотенузе), а третий отрезок - центральный, будет равен меньшему основанию, т.к. является противоположной стороной прямоугольника. Далее находим длину большего основания. Оно равно 6см+15см= 21см. Меньшее основание равно 21см-6см-6см = 9 см.
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.