В треугольнике со сторонами 6 см, 7 и 12 вписана окружность. К окружности проведена касательная, пересекающая две большие стороны треугольника. Чему равен периметр отсеченного треугольника?(подробное объяснение
Δ АВС, Δ АСD и Δ ВСD подобны по свойству высоты прямоугольного треугольника, проведенной из прямого угла к гипотенузе. Для удобства при вычислениях обозначим
длину АD равной х, длину СD равной у. Из подобия треугольников АСD и ВСD: х:5=у:12, По свойству пропорции: произведение средних членов пропорции равно произведению ее крайних членов: 5у=12х отсюда у=12х/5. Найдем АС из треугольника АСD по теореме Пифагора: AC²=x²+y² AC²=x²+144x²/25 AC =√(x²+144x²/25)=13x/5
Обозначим искомый радиус вписанной в треугольник АВС окружности R Составим пропорцию отношения радиусов R и r вписанных окружностей и меньших катетов в подобных треугольниках АВС и АСD
См. рисунок: Так как диагонали в этой трапеции взаимно перпендикулярны, углы между диагоналями и основаниями трапеции равны 45°. "Перевернем и перенесем" ( мысленно) прямоугольный треугольник, который высота трапеции отсекает от нее с боковой линией и "приложим" по другую сторону трапеции. Получим квадрат со стороной, равной высоте. Площадь этого квадрата равна площади трапеции. Но площадь трапеции находят также произведением ее высоты на среднюю линию. Следовательно, средняя линия трапеции равна высоте и равна 15 см
Сделаем рисунок к задаче.
Δ АВС, Δ АСD и Δ ВСD подобны по свойству высоты прямоугольного треугольника, проведенной из прямого угла к гипотенузе.
Для удобства при вычислениях обозначим
длину АD равной х,
длину СD равной у.
Из подобия треугольников АСD и ВСD:
х:5=у:12,
По свойству пропорции: произведение средних членов пропорции равно произведению ее крайних членов:
5у=12х
отсюда
у=12х/5.
Найдем АС из треугольника АСD по теореме Пифагора:
AC²=x²+y²
AC²=x²+144x²/25
AC =√(x²+144x²/25)=13x/5
Обозначим искомый радиус вписанной в треугольник АВС окружности R
Составим пропорцию отношения радиусов R и r вписанных окружностей и меньших катетов в подобных треугольниках АВС и АСD
R:5=АС:х
R:5=(13x/5):х
Rх=5(13x/5)
R = 13 см
См. рисунок:
Так как диагонали в этой трапеции взаимно перпендикулярны, углы между диагоналями и основаниями трапеции равны 45°.
"Перевернем и перенесем" ( мысленно) прямоугольный треугольник, который высота трапеции отсекает от нее с боковой линией и "приложим" по другую сторону трапеции. Получим квадрат со стороной, равной высоте.
Площадь этого квадрата равна площади трапеции.
Но площадь трапеции находят также произведением ее высоты на среднюю линию.
Следовательно, средняя линия трапеции равна высоте и равна 15 см