1) чертим Δ АВС -равносторонний. То есть все стороны одинаковы и равны 18 см. , все углы по 60 градусов; 2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см. 3) Проводим В1Д // ВС и В1Е // АВ; 4) рассматриваем Δ АВС и Δ АДВ1. Они подобны. Стало быть, все стороны одного пропорциональны сходственным сторонам другого. 5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ; 6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ; 7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ; 8) Тогда ВД=АВ-АД=18-9=9(см) . 9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см. 10 ответ: периметр образовавшегося четырёхугольника равен 36 см.
Сумма углов тр-ка равна 180 гр, значит уг.В = 180 -60 - 60 = 60гр.
Все углы тр-ка одинаковые, значит тр-к АВС - равносторонний,
и АВ =АС =ВС = 12,8см
Найдём высоту тр-ка АВС: h = AB·sin 60 = 12.8 · 0.5√3 = 6.4√3 cм
Площадь тр-ка АВС S = 0.5 AC· h = 0.5 · 12.8 · 6.4√3 = 40.96√3 cм²
ответ: 40,96√3 см²
2) Полупериметр тр-ка р = 0,5(5 + 4 +√17) = 4,5 + 0,5√17
р-а = 4,5 + 0,5√17 - 5 = -0,5 + 0,5√17
р - b = 4,5 + 0,5√17 - 4 = 0,5 + 0,5√17
р - с = 4,5 +0,5√17 - √17 = 4,5-0,5√17
Площадь тр-ка равна S = √(p - a)(p - b)(p - c)/p =
= √(-0.5 + 0.5√17)(0.5 + 0.5√17)(4.5 - 0.5√17)/ (4.5+ 0.5√17)
= √(0.25·17 - 0.25)(4.5² - 0.25·17)/(4.5 + 0.5√17)² =
= √(0.25·16·16)/(4.5 + 0.5√17)² = 8/(4.5 + 0.5√17
ответ: 8/(4,5 + 0,5√17)
2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см.
3) Проводим В1Д // ВС и В1Е // АВ;
4) рассматриваем Δ АВС и Δ АДВ1. Они подобны.
Стало быть, все стороны одного пропорциональны сходственным сторонам другого.
5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ;
6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ;
7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ;
8) Тогда ВД=АВ-АД=18-9=9(см) .
9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см.
10 ответ: периметр образовавшегося четырёхугольника равен 36 см.