1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
1)120°
2)65°
3)60°
4)"="
Объяснение:
1) х угол при основании, их два; 4х угол при вершине; всего х+х+4х=6х и это 180°=> х=30
угол при вершине 4*30=120
2) (180-50)/2=130/2=65
3) в равностороннем треугольнике углы по 60°
биссектрисы их делят пополам, т.е. 30°
При пересечении биссектрис образуется треугольник, в котором 2 угла по 30°, отсюда 180°-30°*2=120°, но этот угол тупой. Острый угол является смежным с ним. Сумма смежных углов равна 180°, значит острый угол равен 180°-120°=60°
4) т.к. периметр это сумма всех сторон, а медиана, разбивая треугольник АВС на 2 треугольника(АМВ и АМС) является общей стороной и предполагает, что ВМ=СМ, то при равных периметрах третьи стороны равны.
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16