Рассмотрим вертикальное диаметральное сечение шара. Оно представляет собой окружность радиуса R с центром в точке О (центр шара). Пересечением диаметрального сечения и секущей плоскости является хорда АВ, длиной 2r = 12·2 = 24см. Из центра окружности О опустим на хорду перпендикуляр ОС = h = 5см. Точка С делит хорду АВ пополам. Рассмотрим прямоугольный ΔАОС, в котором ОС = 5см (катет), АС = r = 12см (катет) и гипотенуза ОА = R. Найдём R по теореме Пифагора R² = r² + h² = 12² + 5² = 144 + 25 = 169 R = 13см ответ: радиус шара 13см
АС = ВС = АВ = а = 3√3 см. Ребро ДС = 5см МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ) МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4 МД = 0,5√19 см Площадь ΔМДС равна половине произведения катетов МС и МД S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см² ответ: (9√19)/8 см² PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?
Рассмотрим прямоугольный ΔАОС, в котором ОС = 5см (катет), АС = r = 12см (катет) и гипотенуза ОА = R.
Найдём R по теореме Пифагора R² = r² + h² = 12² + 5² = 144 + 25 = 169
R = 13см
ответ: радиус шара 13см
МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ)
МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм
В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4
МД = 0,5√19 см
Площадь ΔМДС равна половине произведения катетов МС и МД
S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см²
ответ: (9√19)/8 см²
PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?