В треугольникеABC проведена биссектриса AD. Касательные в точке D к описанным окружностям треугольников ABD и ACD пересекают стороны AC и AB соответственно в точках E и F. Отрезки BE и CF пересекаются в точке G. Известно, что ∠B=65∘, а ∠C=75∘.Найдите ∠GDA.
E - точка касания прямой CD и окружности
Отрезки касательных к окружности, проведенных из одной точки, равны.
CA=CE; DB=DE
△AOC=△COE; △EOD=△DOB (по трем сторонам)
∠AOC=∠COE; ∠EOD=∠DOB
∠AOC+∠COE+∠EOD+∠DOB =180° <=> 2∠COE +2∠EOD =180° <=> ∠COE+∠EOD =90° <=> ∠COD =90°
∠OEC =90° (касательная перпендикулярна радиусу, проведенному в точку касания)
OE - высота в прямоугольном треугольнике COD
Квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.
OE^2= CE*DE <=> OE^2= CA*DB
Двугранный угол при стороне пирамиды - это угол между высотой основания СН и апофемой (высотой грани) SH грани АSB по определению двугранного угла (так как СН и SH перпендикулярны ребру АВ). Прямоугольный треугольник SOH равнобедренный, так как его острый угол SHO=45°(дано). ОН=SO=5см. Но ОН=(1/3)*СН (поскольку треугольник АВС правильный), значит СН=15см, а ОС=ОВ=10см.
Тогда НВ=√(ОВ²-ОН²) или НВ=√(100-25)=5√3см, а АВ=2*НВ или АВ=10√3см. Боковое ребро пирамиды равно SB=√(ОВ²+SО²) или SB=√(100+25)=5√5см по Пифагору.
Тогда апофема SH=√(SВ²-HB²) или SН=√(125-75)=5√2см (по Пифагору).
Площадь боковой грани равна Sбг=(1/2)*АВ*SH или Sбг=(1/2)*10√3*5√2=25√6см².
Таких граней три, знаяит площадь боковой поверхности пирамиды равна Sб=75√6см².
Площадь основания - площадь правильного треугольника равна So=(√3/4)a² (a - сторона треугольника). So=(√3/4)300=75√3см².
Площадь полной поверхности пирамиды равна So+Sб=75√3+75√6=75√3(1+√2)см².
ответ: So=75√3см², Sб=75√6см², S=75√3(1+√2)см².