Длина такого отрезка равна высоте, опущенной на основание, деленной на КОСИНУС угла отрезка с этой высотой.
Косинус - монотонно убывающая функция (между 0 и 180, между 0 и 90 она еще и положительна, а у нас именно такой случай), что легко видно из координатного определения (асбцисса радиуса единичной окружности, чем больше угол, тем меньше координата конца радиуса - в интервале углов от 0 до 90).
Поэтому длина отрезка будет монотонно возрастать. Пока конец отрезка не достигнет вершины (конца основания).
Есть еще какая-то теорема, что в треугольнике против большего угла лежит большая сторона, применение этой теоремы к треугольнику, образованному отрезком, боковой стороной и куском основания, сразу решает задачу... но я не помню, как эта теорема доказывается без применения тригонометрии:
1. Дано: ΔАВС, АВ>BC>AC.один из углов треугольника равен 120 градусов,а другой 40 градусов
Найти: углы A,B,C
Решение: Сумма углоа треугольника = 180 градусов. значит третий угол = 180 - (120+40) = 20 градусов.
Значит углы в треугольнике равны 120, 40, 20.
В треугольнике напротив бОльшей стороны лежит бОльшй угол. Напротив АВ лежит угол С, значит ∠С=120.
Напротив ВС лежит угол А, значит ∠А=40
Напротив АС - угол В, значит ∠В = 20
ответ: ∠В=20, ∠А=40, ∠С=120
2задача.
Дано: ΔАВС, ∠А=50°, ∠С=12*∠В
Найти: ∠В, ∠С
Решение:
Сумма углов треугольника = 180°. Значит ∠В+∠С=180-∠А = 180°-50°=130°
Пусть ∠В-х, тогда ∠С=12х, тогда ∠В+∠С=12х+х=12х, что равно 130°
13х=130
х=10° - ∠В
12*10°=120°-∠С
ответ: 10° и 120°
Длина такого отрезка равна высоте, опущенной на основание, деленной на КОСИНУС угла отрезка с этой высотой.
Косинус - монотонно убывающая функция (между 0 и 180, между 0 и 90 она еще и положительна, а у нас именно такой случай), что легко видно из координатного определения (асбцисса радиуса единичной окружности, чем больше угол, тем меньше координата конца радиуса - в интервале углов от 0 до 90).
Поэтому длина отрезка будет монотонно возрастать. Пока конец отрезка не достигнет вершины (конца основания).
Есть еще какая-то теорема, что в треугольнике против большего угла лежит большая сторона, применение этой теоремы к треугольнику, образованному отрезком, боковой стороной и куском основания, сразу решает задачу... но я не помню, как эта теорема доказывается без применения тригонометрии: