В условии дан куб абсда1б1с1д1 .Так же известно что ребро куба равно 3 Найдите угол между прямой КМ и плоскостью BB1DD1 если точка К- середина ребра аб,а точка М - середина ДД1.Задание на метод координат!
Основание правильной четырехугольной призмы- квадрат со стороной а, а=24/4=6 см, боковое ребро ⊥ основанию и равно 10, площадь полной поверхности призмы равна Sбок+2Sосн, Sбок = 10*4а= 10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36= 240+72=312 см², основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°, Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см², боковое ребро ⊥ основанию и равно 10 см, т е Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3, сравним площади полных поверхностей этих призм: 312=240+72 > 240+32√3, (√3 < 2) , т е у нас полная поверхность четырехугольной призмы больше треугольной
Пирамида правильная поэтому в основании квадрат нацдем половину диагонали этого квадрата. так как стороны равны 6, то искомое (корень из 6^2+6^2)/2=(корень из 62/2 =3корня из двух. половина диагонали основания, высота опущенная из вершины пирамиды и боковое ребро образуют прямо угольный треугольник найдем высоту tg60=h/половину диагонали h=половина диагонали ×tg60 h=3корня из 2 ×клрень из 3=3 корня из 6 а даль ше по формуле найлем радиус сферы R=(2h^2 +a^2)/4h где а основание R=(2×9×6+36)/(12корень из 6)=144/(12корень из 6)=2корня из 6 найденный радиус вставим в формулу площади сферы S=4пи×R^2 S=4пи×4×6=96пи будет лучше если ты назовешь пирамиду буквами и мои млоаа напишешь через нтх
а=24/4=6 см, боковое ребро ⊥ основанию и равно 10,
площадь полной поверхности призмы равна Sбок+2Sосн, Sбок = 10*4а=
10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36=
240+72=312 см²,
основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°,
Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см²,
боковое ребро ⊥ основанию и равно 10 см, т е
Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3,
сравним площади полных поверхностей этих призм:
312=240+72 > 240+32√3, (√3 < 2) , т е у нас полная поверхность
четырехугольной призмы больше треугольной
половина диагонали основания, высота опущенная из вершины пирамиды и боковое ребро образуют прямо угольный треугольник найдем высоту
tg60=h/половину диагонали
h=половина диагонали ×tg60
h=3корня из 2 ×клрень из 3=3 корня из 6
а даль ше по формуле найлем радиус сферы
R=(2h^2 +a^2)/4h где а основание
R=(2×9×6+36)/(12корень из 6)=144/(12корень из 6)=2корня из 6
найденный радиус вставим в формулу площади сферы
S=4пи×R^2
S=4пи×4×6=96пи
будет лучше если ты назовешь пирамиду буквами и мои млоаа напишешь через нтх