20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.
Пусть ∠МВС=х, тогда ∠АВМ=60-х.
Углы МВС и АВМ - углы между касательной и хордой, значит ∠АО1В=2(60-х) и ∠СО2В=2х.
Формула хорды: l=2Rsin(α/2), где α - градусная мера хорды.
АВ=2·О1В·sin(60-х)=2R·sin(60-x),
ВС=2·О2В·sinx=2r·sinx,
АВ=ВС, значит
2R·sin(60-x)=2r·sinx,
2·5(sin60·cosx-cos60·sinx)=2·3sinx,
10(√3cosx/2-sinx/2)=6sinx,
5√3cosx-5sinx=6sinx,
11sinx=5√3cosx,
11tgx·cosx=5√3cosx,
tgx=5√3/11.
-----------------------------------------------
tg²x+1=1/cos²x,
tg²x+1=1/(1-sin²x),
1-sin²x=1/(tg²x+1),
sin²x=1-[1/tg²x+1)],
sinx=5√3/14.
------------------------------------------------
Итак, ВС=2r·sinx=6·5√3/14=15√3/7≈3.7 см - это ответ.
20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.