Можно так...: Пусть MNPQ четырех угольник, тогда, если из точки Q провести диагональ в точку М и из точки N в точку P, получаться два треугольника NOM и QOP с равными углами NOM и QOP.(они равны так как являются вертикальными) стороны этих треугольников тоже равны по построению. Треугольники равны.( первый признак равенства). по этому углы OQP и ОМР равны. Исходя из этого стороны MN И PQ параллельны и равны. Так же доказывается параллельность и равенство сторон NQ и MP. (через треугольники NOQ MOP) Противоположные стороны параллельны и равны это параллелограмм.
1. Отрезок, для которого указано, какая из его граничных точек считается началом, а какая - концом, называется вектором. Нулевой вектор, проекция которого изображается в виде точки, так как его длинна равна нулю ( поэтому и можем изобразить только точкой) 5. Из точки можно построить только один равный вектор, так как они должны быть параллельны, одинаковой длины и направленности 6. Для любых векторов а, b, и с справедливы равенства: 1. a + b = b + a (переместительный закон) 2. (a + b) + c = a + (b + c) (сочетательный закон)
5. Из точки можно построить только один равный вектор, так как они должны быть параллельны, одинаковой длины и направленности
6. Для любых векторов а, b, и с справедливы равенства:
1. a + b = b + a (переместительный закон)
2. (a + b) + c = a + (b + c) (сочетательный закон)