В заданиях 6-10 в ответе запишите верно ли утверждение или нет:
6. Два различных диаметра окружности пересекаются в точке, являющейся центром.
7. Если расстояние от центра окружности до прямой равно диаметру окружности, то эти прямая и окружность касаются.
8. Если радиус окружности равен 2, а расстояние от центра окружности до прямой равно 3, то эти прямая и окружность не имеют общих точек.
9. Если радиус окружности и расстояние от центра окружности до прямой равны 2, то эти прямая и окружность касаются.
10. Если две окружности касаются, то расстояние между их центрами равно сумме радиусов.
1)Воспользуемся для решения теоремой синусов для треугольника.
ВС / Sin A = AB / Sin C = AC / Sin B.
AB = 4 * √2, угол А = 450, угол С = 300, ВС = ?
(4 * √2) / Sin 30 = BC / Sin 45.
(4 * √2) / (1 / 2) = BC / 1 / √2).
ВС / 2 = (4 * √2) / √2 = 4.
ВС = 4 * 2 = 8 см.
ответ: ВС = 8 см.
2)
Рассмотрим треугольник АОС. Так как медианы равнобедренного треугольника равны и в точке пересечения делятся в отношении 2/1, то АО = СО, следовательно треугольник АОС равнобедренный, а его углы при основании будут равны: угол А = С = (180 – 120) / 2 = 300.
Тогда по теореме синусов: АС / Sin 120 = AO / Sin 30.
12 / (√3/2) = АО / (1/2).
АО = 6 / (√3/2) = 12 / √3 = 4 * √3.
Медианы треугольника, в точке пересечении делятся в соотношении 2/1, тогда АО / ОМ = 2 / 1.
ОМ = АО / 2 = 2 * √3.
Тогда М = СК = 2 * √3 + 4 * √3 = 6 * √3.
ответ: Медианы равны 6 * √3 см
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.