а) две пары смежных(Сме́жные углы́ — это два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой, поэтому развёрнутый угол( =180°)
∠FME и ∠EMN
∠FMD и ∠DMN
(это не все, там еще есть, это требуемые две пары)
Свойства смежных углов: Сумма смежных углов равна 180°. Если два угла равны, то и смежные с ними углы равны.
б) ∠FME = ∠DMN
∠FMD =∠EMN
это вертикальные углы . Вертикальные всегда равны.
Объяснение:
S(бок)= S(МDА)+S(МDС)+S(МАВ)+S(МСВ)
1)Т.к. МD⊥(АВС) , то МD⊥DА , МD⊥DС.
Δ МDА= МDС как прямоугольные по 2-м катетам : МD-общая, АD=DС как стороны квадрата , S(МDА)=S(МDС)=1/2*20*15=150(см²).
2) МD⊥( АВС), DА⊥АВ , значит МА⊥АВ по т. о 3-х перпендикулярах⇒ΔМАВ-прямоугольный.
МD⊥( АВС), DС⊥СВ , значит МС⊥СВ по т. о 3-х перпендикулярах⇒ΔМСВ-прямоугольный.
3) ΔМАВ= ΔМСВ, как прямоугольные по катетам МА=МС=25 и общей гипотенузе МВ. Поэтому S(МАВ)=S(МСВ)=1/2*20*25=250 (см²).
4)S(бок)= 2*150+2*250=800 (см²).
ответ и Объяснение:
а) две пары смежных(Сме́жные углы́ — это два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой, поэтому развёрнутый угол( =180°)
∠FME и ∠EMN
∠FMD и ∠DMN
(это не все, там еще есть, это требуемые две пары)
Свойства смежных углов: Сумма смежных углов равна 180°. Если два угла равны, то и смежные с ними углы равны.
б) ∠FME = ∠DMN
∠FMD =∠EMN
это вертикальные углы . Вертикальные всегда равны.
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid