ів зверху У прямокутній системі координат на площині ху задано прямокутний трикутник АСВ ( кут С=90°). Коло з центром у точці А, задане рівнянням (х + 3)² + у² – 4у = 21, проходить через вершину С. Сторона АС паралельна осі у, довжина сторони ВС втричі більша за довжину сторони АС. Визначте координати вершини В (хВ; уВ), якщо вона лежить у першій координатній чверті. У відповідь запишіть суму хВ + уВ .
Треугольники АВС и А1ВС1 подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны:
- А1В : АВ = С1В : СВ = 1/2 (коэффициент подобия k=1/2);
- угол В - общий для обоих треугольников.
Зная, что отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, запишем:
S A1BC1 : S ABC = k² = (1/2)²=1/4, отсюда
S ABC = 4*S A1BC1=4*20√6=80√6.
Площадь треугольника равна половине произведения его основания на высоту:
S ABC = 1/2*АС*ВН
80√6 = 1/2*10х*ВН.
Выразим высоту ВН. В прямоугольном треугольнике АНВ по теореме Пифагора можно выразить ее так:
BH=√AB²-AH²
BH=√(11x)²-(5x)²
BH=√96x²=x√16*6=4x√6.
Тогда 80√6 = 1/2*10х*ВН=1/2*10х*4x√6
80√6 = 20х²√6
х²=4
х=2
Находим периметр АВС:
Р АВС = 11*2+10*2+11*2=64