1 Правильный четырехугольник это квадрат.
Пусть сторонs квадрата равны а, a = 4.
А) Радиус вписанной окружности перпендикулярен одной из сторон квадрата в точке касания, и равен половине стороны квадрата, то есть
R = a/2 = 4/2 = 2 (см).
Б) Теперь найдем радиус окружности, описанной вокруг равностороннего треугольника, по формуле из общей формулы:
R = a*b*c/(4*S), где a, b, c – стороны произвольного треугольника, S – площадь треугольника.
Частный случай, когда треугольник равносторонний и, применяя теорему синусов:
R = b/(2*sin α), в равностороннем треугольнике все углы равны 60, b – сторона равностороннего (правильного) треугольника.
R = b/(2*sin 60), sin 60 = √3/2.
R = b/√3.
b = R*√3 = 2√3 (см).
2 а) Дуги АВ, ВС, СД и АД равны, значит АВСД - вписанный квадрат.
Длина окружности: С=4ВС=16π см.
С=2πR ⇒ R=C/2π=16π/2π=8 см - это ответ.
б) Диагональ квадрата - это диаметр окружности.
d=D=2R=16 см.
Искомые хорды равны сторонам квадрата: а=d/√2=16/√2=8√2.
АВ=ВС=СД=АД=8√2 см - это ответ.
1 Правильный четырехугольник это квадрат.
Пусть сторонs квадрата равны а, a = 4.
А) Радиус вписанной окружности перпендикулярен одной из сторон квадрата в точке касания, и равен половине стороны квадрата, то есть
R = a/2 = 4/2 = 2 (см).
Б) Теперь найдем радиус окружности, описанной вокруг равностороннего треугольника, по формуле из общей формулы:
R = a*b*c/(4*S), где a, b, c – стороны произвольного треугольника, S – площадь треугольника.
Частный случай, когда треугольник равносторонний и, применяя теорему синусов:
R = b/(2*sin α), в равностороннем треугольнике все углы равны 60, b – сторона равностороннего (правильного) треугольника.
R = b/(2*sin 60), sin 60 = √3/2.
R = b/√3.
b = R*√3 = 2√3 (см).
2 а) Дуги АВ, ВС, СД и АД равны, значит АВСД - вписанный квадрат.
Длина окружности: С=4ВС=16π см.
С=2πR ⇒ R=C/2π=16π/2π=8 см - это ответ.
б) Диагональ квадрата - это диаметр окружности.
d=D=2R=16 см.
Искомые хорды равны сторонам квадрата: а=d/√2=16/√2=8√2.
АВ=ВС=СД=АД=8√2 см - это ответ.
-б=(2;4;-2)
1/2а-б=1/2а+(-б)=(5;3;-1)
2)2б=(-4;-8;4)
2б+а=(2;-10;6)
|2б+а|=4+100+36(и все это под корнем)=
140(под корнем)=4•35(под корнем)=2корень из 35
3)cosL=a•b/|a|•|b|
|a|=36+4+4(под корнем)=корень из 44
|b|=4+16+4(под корнем)=корень из 24
А•б=6•(-2)+(-2)•(-4)+2•2=-12+8+5=0
СоsL1=0/корень 44•корень 24=0
L1=90 градусов
L2
A-b=(6-(-2));-2-(-4);2-2)=(8;2;0)
A+b=(6+(-2);(-2)+(-4);;2+2)=(4;-6;4)
CosL2=(a-b)•(a+b)/|a-b|•|a+b|
(A-b)•(a+n)=8•4+2•(-6)+0•4=32-12=20
|a-b|=64+16(под корнем)=корень из 80
|а+б|=16+36+16(под корнем)=32+36(под корнем)=корень из 68
СоsL2=20/80(корень )•69(корень)=5(корень)•5(корень)/5(корень)•2•17(корень)=5(корень):2корень из 17
L2=arccos 5(корень)/2 корень 17