В3. Диагональ AC трапеции ABCD (АВ || CD) делит ее на два подобных треугольника. Найдите площадь трапеции ABCD, если AB = 25 см, ВС = 20 см, AC = 15 см. запишите также решение задачи
Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
Из комментария к вопросу - исправленное условие. Две плоскости параллельны между собой. С точки К, которая не лежит в этих плоскостях или между ними, проведены две прямые, которые пересекают эти плоскости соответственно в точках А1 и А2 и В1 и В2. КА1=3 см, В1В2=12 см, А1А2=КВ1. Найти КА2.
Через три точки можно провести плоскость.⇒
Все точки прямых КА2 и КВ2 лежат в одной плоскости. Если плоскость пересекает две параллельные плоскости, то линии их пересечения параллельны. ⇒А1В1|║А2В2.
Треугольники КА2В2 и КА1В1 подобны по равным углам.
Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
Объяснение:
Через три точки можно провести плоскость.⇒
Все точки прямых КА2 и КВ2 лежат в одной плоскости. Если плоскость пересекает две параллельные плоскости, то линии их пересечения параллельны. ⇒А1В1|║А2В2.
Треугольники КА2В2 и КА1В1 подобны по равным углам.
Из подобия следует
КА2:КА1=КВ2:КВ1
Обозначим А1А2=КВ1=а
Тогда (а+3):а=(а+12):а ⇒
а²=36, а=√36=6 см
КА2=КА1+А1А2=9 см