Рассмотрим треугольник ВСН, он прямоугольный , по теореме Пифагора ВС²=НС²+ВН² 4²=1²+ВН² 16=1+ВН² ВН²=15 ВН=√15
Катет, лежащий против острого угла в 30°, в точности равен половине гипотенузы. значит гипотенуза = 2*катета который лежит против 30° гипотинуза прямоугольного треугольника АВН=2*катет ВН АВ=2√15
смотрим треугольник АВН, он прямоугольный, по теореме Пифагора прямоугольного треугольника АВ²=ВН²+АН² (2√15)²=√15²+АН² 60=15+АН² АН²=45 АН=√45
только так в голову приходит, но, возможно, если ещё подумать то будет решение без корня (если такой нельзя)
Воспользуемся теоремой о свойстве касательной: Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания. ⊥ ⊥ Δ и Δ прямоугольные ( как радиусы) общая Δ Δ (по гипотенузе и острому углу) Значит Пусть тогда Из Δ
по теореме косинусов:
с другой стороны из Δ
(1)
║ ⊥ ∩ ⇒ ⊥ Из C опустим перпендикуляр на сторону AD, т.е. ⊥ прямоугольник
4²=1²+ВН²
16=1+ВН²
ВН²=15
ВН=√15
Катет, лежащий против острого угла в 30°, в точности равен половине гипотенузы.
значит гипотенуза = 2*катета который лежит против 30°
гипотинуза прямоугольного треугольника АВН=2*катет ВН
АВ=2√15
смотрим треугольник АВН, он прямоугольный, по теореме Пифагора прямоугольного треугольника
АВ²=ВН²+АН²
(2√15)²=√15²+АН²
60=15+АН²
АН²=45
АН=√45
только так в голову приходит, но, возможно, если ещё подумать то будет решение без корня (если такой нельзя)
- описана около Δ
и точки касания
?
Воспользуемся теоремой о свойстве касательной:
Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания.
⊥
⊥
Δ и Δ прямоугольные
( как радиусы)
общая
Δ Δ (по гипотенузе и острому углу)
Значит
Пусть тогда
Из Δ
по теореме косинусов:
с другой стороны из Δ
(1)
║
⊥
∩ ⇒ ⊥
Из C опустим перпендикуляр на сторону AD, т.е.
⊥
прямоугольник
Δ равнобедренный, значит
Δ прямоугольный
подставим в (1) и получим ответ:
ответ:
рисунок в приложении