Варіант 1
1. ( 0, ) Яка з наведених точок належить площині Оху?
а) М(-1;6;2) б) К(0;3;-9) в) Р(0;0;-2) г) С(5;0;9) д) В(4;-5;0)
2. ( 0, ) Яка з точок М є серединою відрізка АВ, якщо А(1;-1;1); В(1;-1;1)?
а) М(2;-2;0) б) М(1;-1;0) в) М(-1;1;1) г) М(0;1;-1) д) М(2;0;1)
3.( 0, ) Яка з точок симетрична точці А(-5;3;-2) відносно початку координат
а) (5;-3;2) б) (5;3;-2) в) (-5;-3;2) г) (3;-5;2) д) Інша відповідь
4. ( 0, ) Знайти координати вектора vec{AB} , якщо А( 3;-5;0), В( -2;7;1).
а) (1;-12;-1) б) (-5;12;1) в) (5;-12;-1) г) (1;2;1) д) (-5;2;1)
5. (За кожну відповідність 0, ) Установити відповідність між векторами ( 1-4) і співвідношеннями між ними ( А-Д).
1. vec{a} (6;-9;3) i vec{b} (2;-3;1) А Вектори перпендикулярні
2. vec{c} (-5;2;-7) i vec{d} (6;-4;3) Б Вектори колінеарні
3. vec{m} (1;2;-1) i vec{n} (2;-3;-4) В Вектори мають рівні довжини
4. vec{p} (2;-2;2) i vec{k} (1;-3;sqrt{2}) Г Сума векторів (1;vec{-2-};-4)
Д Вектори рівні
6. ( ) Дано АВСD – паралелограм. А(-4;1;5), В(-5;4;2), С( 3;-2;-1). Знайти координати вершини D.
7. ( ) При яких значеннях a вектори vec{c} (2;-3;8) і vec{d} (-7;-2;a) перпендикулярні?
8. ( ) Знайти на осі у точку, рівновіддалену від точок А(-3;7;4) і В(2;-5;-1).
9. ( ) Дано вектори: vec{a} (5;2;1), vec{b} (0;-3;2) . Знайти довжину вектора vec{c} = 2 vec{a}- vec{b} .
10. ( ) Знайти кут між векторами vec{AB} i vec{CD} , якщо А(1;0;2), В(1;sqrt{3};3), С(-1;0;3), D(-1;-1;3)
АВ - касательная;
АС -секущая;
СD - внутренний отрезок секущей (рисунок в приложении).
По условиям задачи:
АВ+АС=30 см
AB-CD=2
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:
АВ²=АС*DA
Выразим:
AC=30-AB
CD=AB-2
Пусть АВ=х см, тогда
АС=30-х
СD=x-2
АС=DA-DC=30-x-x+2=32-2x
АВ²=АС*DA=(30-x)*(32-2x)
x²=(30-x)*(32-2x)
x²=960-32х-60х+2х²
2х²-х²-92х+960=0
х²-92х+960=0
D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68)
x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи
x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12
АВ=12 см
АС=30-АВ=30-12=18 см
ответ: касательная равна 12 см, секущая - 18 см.
Сначала проверим задачу на здравый смысл: если треугольник равнобедренный, то углы при основании равны. Если же мы рассматриваем угол при основании равный 96, то тогда и второй угол при основании будет равен 96. Такого быть не может. Остаётся только вариант, когда угол в 96 градусов-это угол при вершине треугольника.
Ищем два оставшихся угла: Из суммы углов треугольника (это 180*), мы вычитаем 96* (это угол при вершине). Делим полученные число 84 на 2, так как имеем два равных угла при основании. Каждый из них равен по 42 градуса. ответ: 42*