Варіант 1 1. Да зовнішніх күта трикутника відповідно дорівнюють 115 140 Зайдіть третій зовнішній кут трикутника. 2. Знайдіть усі кути, утворені при перетині двох паралельних премих січною, якщо один із цих кутів на 40' більший за другий.
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Высота трапеции Н=2h, где h - высота каждой меньшей трапеции.
ВС=а, АД=b
МК - средняя линия исходной трапеции и равна (а+b):2
МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК
S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований:
S1=h*(ВС+МК):2
S1=h*{а+(а+b):2}:2)=h*(3a+b):4
S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований:
S2=h*(AD+МК):2
S2=h*{b+(b+a):2}:2=h*(a+3b):4
Разность между площадями этих трапеций
S2-S1=h*(a+3b):4-h*(3a+b):4=
=(ha+3hb-3ha-hb):4=2h(b-a):4
2h=H
S2-S1=H(b-a):4
Высота трапеции Н=2h, где h - высота каждой меньшей трапеции.
ВС=а, АД=b
МК - средняя линия исходной трапеции и равна (а+b):2
МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК
S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований:
S1=h*(ВС+МК):2
S1=h*{а+(а+b):2}:2)=h*(3a+b):4
S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований:
S2=h*(AD+МК):2
S2=h*{b+(b+a):2}:2=h*(a+3b):4
Разность между площадями этих трапеций
S2-S1=h*(a+3b):4-h*(3a+b):4=
=(ha+3hb-3ha-hb):4=2h(b-a):4
2h=H
S2-S1=H(b-a):4