Варіант 1 1. Кінець А відрізка АВ належить площині. Через точку Віточку
С ,що належить даному відрізку проведено паралельні прямі
які перетинають площину в точках В1 iC1 відповідно. Знайти
відрізок BB1 , якщо точка Сє серединою відрізка АВ і СС1=5
2.На відрізку AB , який не перетинає площину , позначили точку
С так , що АС=ВС.Через точки А,В,С провели паралельні прямі
які перетинають площину в точках А1, В1,С1
відповідно.Знайдіть відрізок ВВ1,якщо AA1=4 см, CC1=6 см.
Варiант 2
1. Кінець С відрізка СД належить площині.На відрізку СД точка
Е середина. Через точки ДіE провели паралельні прямі , які
перетнули площину у точках Д1 іE1 відповідно. Знайдіть
відрізок ЕЕ1 , якщо ДД1 = 10.
2. Точка С середина відрізка АВ, який не перетинає площину.
Через точки А,В,С проведено паралельні прямі, які перетинають
площину у точках А1 В1,С1 відповідно.Знайдіть відрізок AA1,
якщо вB1=18см , CC1=15 см.
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см