Варіант 1
І рівень
Виберіть правильну відповідь.
1. Враховуючи, що косинус гострого кута в прямокутному трикутнику дорівнює відношенню прилеглого катета до гіпотенузи, і користуючись рисунком, виберіть значення для косинуса кута А:
а) ; б) ; в) ; г) .
2. Враховуючи, що синус гострого кута в прямокутному трикутнику дорівнює відношенню протилежного катета до гіпотенузи, і користуючись рисунком, виберіть значення для синуса кута В:
а) ; б) ; в) ; г) .
3. Враховуючи, що тангенс гострого кута в прямокутному трикутнику дорівнює відношенню протилежного катета до прилеглого, і користуючись рисунком, виберіть значення для тангенса кута С:
а) ; б) ; в) ; г) .
Рисунки к заданиям прекреплены по порядку.
Объяснение:
1)
Если две плоскости имеют хотя
бы одну общую точку, то они пере
секаются и их пересечением явля
ется прямая (не рассматриваем ва
риант совпадения двух плоскостей).
В данной ситуации плоскость сече
ния MKN будет пересекать все че
тыре вертикальные грани парал
лелепипеда.
2)
Если две параллельные плоскости
пересекает третья плоскость, то
прямые пересечения параллель
ны.
3)
В противоположных гранях че
рез данные точки проводим ( сое
диняем точки М и K ) прямую МK
и через точку N параллельно МK
прямую NX. Отрезки МK и NX яв
ляются линиями сечения;
(соединяем точки K и N) прово
дим прямую KN и через точку М
параллельно KN прямую МХ. От
резки KN и МХ являются линия
ми сечения.
4)
Искомое сечение - четырехуголь
ник МКNX, который является пря
моугольником.
∠BEA = ∠EAD, как внутренние накрест лежащие углы при BE║AD и секущей AE, ∠BEA = 30°.
Сумма углов треугольника равна 180°.В ΔABE:
∠BAE = 180°-∠ABE-∠BEA = 180°-100°-30° = 50°;
По теореме синусов:
дм
BC = 2·BE = 20sin50° дм т.к. E - середина BC.
P(ABCD) = AB+BC+CD+AD = 2·AB+2·BC = 10+40sin50° дм.
Пусть AH⊥BC и H∈BC. Тогда ΔAHB - прямоугольный.
∠ABH = 180°-∠ABE т.к. сумма смежных углов равна 180°, ∠ABH = 180°-100° = 80°.
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.AH = 5sin80° дм
Площадь параллелограмма равна произведению его стороны и высоты проведённой к этой стороне.AH - высота параллелограмма ABCD проведённая к стороне BC.
S(ABCD) = BC·AH = 20sin50°·5sin80° = 100sin50°·sin80° дм².
ответ: 10+40sin50° дм; 100sin50°·sin80° дм².