Варіант – 1 Вектори
1. Дано точки А (-2; 3), В(1;-1), С(2;4). Знайдіть:
1) Координати вектора
2) Модулі векторів
3) Координати вектора
4) Скалярний добуток векторів
5) Косинус кута між векторами
2. Накресліть трикутник АВС. Побудуйте вектор:
1) 2)
3. Дано вектори і При якому значенні k вектори : 1)
колінеарні; 2) перпендикулярні?
4. Вершини трикутника містяться в точках B(0;0),
N(6;0), С(-3;3). Знайдіть косинус кута ےB.
5. Знайдіть косинус кута між векторами
Дано :
Четырёхугольник АВСD — прямоугольник.
Отрезки BD и AC — диагонали.
Точка О — точка пересечения диагоналей.
∠DOC = 20°.
Найти :
∠BDC = ?
∠DBC = ?
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Отсюда AO = OC = OD = OB.
Рассмотрим ∆ODC — равнобедренный (по определению).
Следовательно ∠ODC = ∠DCO (по свойству равнобедренного треугольника).
По теореме о сумме углов треугольника —
∠DOC + ∠ODC + ∠DCO = 180°
∠ODC + ∠DCO = 180° - ∠DOC = 180° - 20° = 160°
∠ODC = ∠DCO = 160°/2 = 80°.
Рассмотрим ∆BDC — прямоугольный.
По теореме о сумме острых углов прямоугольного треугольника —
∠BDC + ∠DBC = 90°
∠DBC = 90° - ∠BDC = 90° - 80° = 10°.
80°, 10°.