Вариант 1.
1. На окружности с центром О отмечены точки А и В так, что угол АOВ прямой. Отрезок ВС - диаметр окружности. Докажите, что хорды АВ и АС равны.
2. В равнобедренном треугольнике АВС с основанием ВС проведена медиана АM. Найдите медиану АM, если периметр треугольника АВС равен 32 см, а периметр треугольника АВM равен 24 см.
3. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210. Найдите эти углы.
4. Один из углов прямоугольного треугольника равен 60, а сумма гипотенузы и меньшего из катетов равна 26,4 см. Найти гипотенузу треугольника.
5. Периметр равнобедренного треугольника равен 50 см, а одна из его сторон на 13 см больше другой. Найдите стороны треугольника.
Вариант 2.
1. Прямая, параллельная основанию равнобедренного треугольника АВС, пересекает боковые стороны АВ и АС и точках М и N. Докажите, что треугольник АМN равнобедренный.
2. Два внешних угла треугольника при разных вершинах равны. Периметр треугольника равен 74 см, а одна из сторон равна 16 см. Найдите две другие стороны треугольника.
3. Отрезки АВ и СM пересекаются в их общей середине. Доказать, что прямые АС и ВM параллельны.
4. В равнобедренном треугольнике АВС с основанием АС проведена биссектриса АD. Найдите ∠ADC, если ∠С = 50˚.
5. Найдите углы треугольника АВС, если ∠А : ∠В : ∠С = 2 : 3 : 4.
1)Розглянемо трикутник CPM:<P=90°,<C=20°=> <M=70°.
У трикутнику KPA:<P=90°,<K=70°=> <A=20°.
За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
AM=MH+AH=6+12=18(см).
2)<KEM=180°-(<MKE+<KME) ?
не знаю, как-то так
Радиус описанной окружности:
Центр описанной окружности равноудален от всех вершин треугольника. В прямоугольном треугольнике центр описанной окружности всегда располагается по середине гипотенузы (так как медиана, проведенная из вершины прямого угла равна половине гипотенузы, следовательно расстояние от центра гипотенузы до вершин всегда одинаково). Радиус описанной окружности будет равен половине гипотенузы, то есть 15/2 или 7,5 (см).
Радиус вписанной окружности:
Найти радиус вписанной окружности можно из равенства площадей. Начертим примерно вписанную окружность. И проведем 3 ее радиуса, перпендикулярно к каждой стороне треугольника. Теперь построим линии, соединяющие центр вписанной окружностит с каждой вершиной (кроме прямого угла). Это будут части биссектрисс (так как центр вписанной окружности находится на пресечении биссектрис). Наш треугольник разбивается на 4 треугольника и квадрат рядом с прямым углом. Записываем равенство площадей, приняв за х строну квадрата (площадь прямоугольного треугольника - полупроизведение катетов):
1/2*12*9=x^2+2*(1/2*x*(9-x))+2*(1/2*x(12-x)). Где последние два слагаемых это площади 4-х попарно равных (по двум углам и стороне между ними) треугольников. После решения получаем корни 3 и 18. Но у нас геометрия, поэтому 18 не подходит, иначе бы у нас был бы катет с длиной 9-18=-9 (см).
Вообще для нахождения радиуса вписанной в прямоугольный треуголик окружности есть формула: r=(a+b-c)/2, где a и b - катеты, c - гипотенуза.
ответ: 7,5 см; 3 см.