Вариант 1 вариант2
если и
1. В треугольнике ABC AB > ВС > АС. Найдите 2 А, 2 В, 2 С, если 1. В треу
известно, что один из углов треугольника равен 120°, а другой 40°.
2. Один из углов прямоугольного треугольника равен 60 0, а сумма другой
гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу 2. Вт
3. Периметр равнобедренного тупоугольного треугольника равен 45 пере
см, а одна из его сторон больше другой на 9 см. Найдите стороны 3. Одна
треугольника.
треуго.
4. Найти углы треугольника АВС
этого Т
B
4. Най
75
20
A
С
puc, 5
Даны уравнения прямых:
(x + 1)/3 = y/(-1) = (z + 1)/(-1) и (x + 1)/2 = (y - 3)/(-1) = z/1 .
1) Перепишем уравнения первой прямой в параметрической форме:
x = 3t - 1,
y = -t,
z = t - 1.
Примем точку Н1 как точку пересечения первой заданной прямой и общего перпендикуляра.
Её координатам соответствует вполне конкретное значение параметра, обозначим его через to . Тогда координаты точки запишутся в виде:
x = 3to - 1,
y = -to,
z = to - 1.
Аналогично для точки Н2 получим
x = 2so - 1,
y = -so + 3,
z = -so.
2) Находим вектор Н1Н2 по двум принципам.
Н1Н2 = p как результат векторного произведения направляющих векторов заданных прямых (ведь он перпендикулярен обеим прямым).
i j k | i j
3 -1 1 | 3 -1
2 -1 1 | 2 -1 = -1i + 2j - 3k -3j + 1i + 2k = 0i - 1j - 1k.
p = (0; -1; -1).
С другой стороны, вектор Н1Н2 проходит через 2 точки, координаты которых заданы в пункте 1.
Н1Н2: (2so - 3to; -so + to + 3; so - to + 1).
Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:
(2so - 3to; -so + to + 3; so - to + 1) = λ(0; -1; -1).
Или покоординатно:
2so - 3to = λ*0;
-so + to + 3 = λ*(-1);
so - to + 1 = λ*(-1)
Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера.
so to λ B
2 -3 0 0 Определитель -2
-1 1 1 -3
1 -1 1 -1
Заменяем 1-й столбец на вектор результатов B:
0 -3 0
-3 1 1 Определитель -6
-1 -1 1
Заменяем 2-й столбец на вектор результатов B:
2 0 0
-1 -3 1 Определитель -4
1 -1 1
Заменяем 3-й столбец на вектор результатов B:
2 -3 0
-1 1 -3 Определитель 4
1 -1 -1
so= -6/ -2 = 3
to= -4/ -2 = 2
λ= 4/ -2 = -2.
Отсюда находим координаты точек:
Н1 = (5; -2; 1) и Н2 = )5; 0; 3).
Вектор Н1Н2 = (0; 2; 2) и его длина √(0²+ 2² + 2²) = √8 = 2√2.
Объяснение:
общий вид уравнения прямой есть y = kx + b. подставляем известные в уравнения:
1) -1 = 1*2 + b => b = -3; y = x - 3;
2) -1 = 2*2 + b => b = -5; y = 2x - 5;
3) -1 = -1*2 + b => b = 1; y = -x + 1;
4) -1 = -2*2 + b => b = 3; y = -2x +3;
5) -1 = -1/2*2 + b => b = 0; y = -1/2*x.
Чтобы изобразить просто подставь в каждое уравнение два значения различных x. Найди y, которым соответствуют каждому x. Отметь на плоскости точки с такими координатам (x,y) и проведи через них прямую. Например для первого уравнения y = x - 3:
подставим x = 3. y = 3 - 3 = 0. первая точка (3;0). подставим x = 4. y = 4 - 3 = 1. вторая точка (4;1).