В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Дианка20043005
Дианка20043005
31.12.2020 10:45 •  Геометрия

Вариант 1 вариант2
если и
1. В треугольнике ABC AB > ВС > АС. Найдите 2 А, 2 В, 2 С, если 1. В треу
известно, что один из углов треугольника равен 120°, а другой 40°.
2. Один из углов прямоугольного треугольника равен 60 0, а сумма другой
гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу 2. Вт
3. Периметр равнобедренного тупоугольного треугольника равен 45 пере
см, а одна из его сторон больше другой на 9 см. Найдите стороны 3. Одна
треугольника.
треуго.
4. Найти углы треугольника АВС
этого Т
B
4. Най
75
20
A
С
puc, 5

Показать ответ
Ответ:
Мельник20331
Мельник20331
14.08.2020 22:07

Даны уравнения прямых:

(x + 1)/3 = y/(-1) = (z + 1)/(-1)  и   (x + 1)/2 = (y - 3)/(-1) = z/1 .  

1) Перепишем уравнения первой прямой в параметрической форме:

x = 3t - 1,

y = -t,

z = t - 1.  

Примем точку Н1 как точку пересечения первой заданной прямой и общего перпендикуляра.

Её координатам  соответствует вполне конкретное значение параметра, обозначим его через to . Тогда координаты точки запишутся в виде:

x = 3to - 1,

y = -to,

z = to - 1.

Аналогично для точки Н2 получим

x = 2so - 1,

y = -so + 3,

z = -so.

2) Находим вектор Н1Н2 по двум  принципам.

Н1Н2 = p  как результат векторного произведения направляющих векторов заданных прямых (ведь он перпендикулярен обеим прямым).

i        j       k |       i        j

3     -1       1 |       3       -1

2     -1       1 |       2       -1  =    -1i + 2j - 3k -3j + 1i + 2k = 0i - 1j - 1k.

p = (0; -1; -1).

С другой стороны, вектор Н1Н2 проходит через 2 точки, координаты которых заданы в пункте 1.

Н1Н2: (2so - 3to; -so + to + 3; so - to + 1).

Поскольку направляющие векторы  коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

(2so - 3to; -so + to + 3; so - to + 1) = λ(0; -1; -1).

Или покоординатно:

2so - 3to = λ*0;

-so + to + 3 = λ*(-1);

so - to + 1 = λ*(-1)

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера.

so to λ B  

2 -3 0 0 Определитель  -2

-1 1 1 -3  

1 -1 1 -1  

Заменяем 1-й столбец на вектор результатов B:    

0 -3 0  

-3 1 1  Определитель  -6

-1 -1 1  

Заменяем 2-й столбец на вектор результатов B:    

2 0 0  

-1 -3 1  Определитель  -4

1 -1 1  

Заменяем 3-й столбец на вектор результатов B:    

2 -3 0  

-1 1 -3  Определитель  4

1 -1 -1  

so= -6/ -2 = 3  

to= -4/ -2 = 2  

λ= 4/ -2 = -2.

Отсюда находим координаты точек:

Н1 = (5; -2; 1) и Н2 = )5; 0; 3).

Вектор Н1Н2 = (0; 2; 2) и его длина √(0²+ 2² + 2²) = √8 = 2√2.


Составить каноническое уравнение общего перпендикуляра к двум данным скрещивающимся прямым взяв в ка
0,0(0 оценок)
Ответ:
PølîñA666
PølîñA666
28.11.2021 15:05

Объяснение:

общий вид уравнения прямой есть y = kx + b. подставляем известные в уравнения:

1) -1 = 1*2 + b => b = -3; y = x - 3;

2) -1 = 2*2 + b => b = -5; y = 2x - 5;

3) -1 = -1*2 + b => b = 1; y = -x + 1;

4) -1 = -2*2 + b => b = 3; y = -2x +3;

5) -1 = -1/2*2 + b => b = 0; y = -1/2*x.

Чтобы изобразить просто подставь в каждое уравнение два значения различных x. Найди y, которым соответствуют каждому x. Отметь на плоскости точки с такими координатам (x,y) и проведи через них прямую. Например для первого уравнения y = x - 3:

подставим x = 3. y = 3 - 3 = 0. первая точка (3;0). подставим x = 4. y = 4 - 3 = 1. вторая точка (4;1).

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота