Вариант № 2 1. Площадь квадрата 81 кв. см. Найдите его периметр.
2. Площадь прямоугольника 120 кв. см, одна из его сторон 10 см. Найдите периметр
прямоугольника.
3. Периметр квадрата равен 24 см. Прямоугольник имеет такую же площадь, что и
квадрат, а одна из его сторон равна 9 см. Чему равен периметр прямоугольника?
4. Стороны параллелограмма равны 10 см и 6 см, а угол между этим сторонами равен 150
градусов. Чему равна площадь этого параллелограмма?
быстрее
1) с=√(а²+b²) = √(16+9) =5см.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
2) b=√(с²-а²) =√(169-144) =5см.
Sinα = a/c = 12/13 ≈ 0,923. α ≈ 67°.
Sinβ = b/c = 5/13 ≈ 0,385. β ≈ 23°.
3) α=30°, значит а=0,5·с = 20см (катет a против угла 30°).
b = √(c²-a²) = √(40²-20²) = 20√3.
β = 60°. (по сумме острых углов прямоугольного треугольника).
4) α=45°, значит β = 45°. а=b= 4см, с= √(а²+b²) = √32 = 4√2см.
5) α=60°, значит β = 30°. (по сумме острых углов прямоугольного треугольника).
с=2·b = 10см (катет b против угла 30°).
а = √(с²-b²)= √75 = 5√3см.
6) а=√(с²-b²)=√(100-36) = √64 = 8дм.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
12см
Объяснение:
ΔABM - прямоугольный (BM⊥AD). В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Катет, лежащий против угла в 30°, это АМ, а гипотенуза в ΔАВМ - это АВ, т.е. АВ=2АМ=2*6см=12см. Также в прямоугольном треугольнике сумма острых углов равна 90°. Поэтому ∠А=90-30=60°.
Поскольку ABCD - ромб, то у него все стороны равны, т.е. AB=BC=CD=AD=12см. Т.е. ΔABD является равнобедренным (AB=AD). ∠ABD=∠ADB=(180-∠BAD)/2=(180-60)/2=60°. Т.е. ΔABD равносторонний. Значит, BD=AB=12см.