Вариант 2 т смежных утлок Котките дружого на 20. Найдите ти смежные углы. тин из углов, оноразовавшихся при пересечении двух прямых, равен 102°. Найдите остальные угла Дано: а = 20P, B 130. Найти: унл1, угл2, угл3, угл4.
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1.
ответ: угол равен 45°.
2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1.
ответ: угол равен 45°.