Рисунок прицепить не могу, попробую на пальцах. Значится рисуем тупоугольный треугольник abc, в котором тупой угол c, а сторона ac=bc и ∠a=∠b Из вершины b проводим высоту к продолженной стороне ac, т.е. высота лежит за пределами Δabc, точку пересечения с продолженной стороной обзовем k, получим высоту bk Теперь проведём биссектрису из вершины b к стороне ac, в точке пересечения поставим f. Получим угол между биссектрисой и высотой, т.е. ∠fbk=48° Примем ∠fbc=x, тогда ∠a=∠b=2x Чтобы найти ∠с нужно сначала найти ∠f, рассмотрим Δfbk: Сумма трёх углов =180°, значит ∠f=180-90-48=42° Теперь рассмотрим Δfbc и выразим ∠c: ∠c=180-42-x ∠c=138-x Теперь возвращаемся к нашему исходному Δabc и составляем уравнение: 2х+2х+(138-х)=180 4х+138-х=180 3х=42 х=14
∠a=∠b=2x Подставляем, получаем ∠a=∠b=28°
∠c=180-28-28 ∠c=124
ответ: углы треугольника равны 28, 28 и 124 градуса
находим площади треугольников по формуле герона:
S=rad(p(p-a)(p-b)(p-c))
rad-корень
p-полупериметр
a,b,c-стороны треугольника
1)Находим полупериметр:
(формула: p=(a+b+c)/2)
полупериметр первого треугольника:
p=(5+8+12)/2
p=12,5cm
полупериметр второго треугольника:
p=(15+24+36)/2
p=37,5cm
2)Находим площадь:
площадь первого треугольника:
S1=rad(12,5(12,5-5)(12,5-8)(12,5-12))
S1=rad(12,5×7,5×4,5×0,5)
S1=(15rad15)4
площадь второго треугольника:
S2=rad(37,5(37,5-15)(37,5-24)(37,5-36))
S2=rad(37,5×22,5×13,5×0,5)
S2=(135rad5)/4
3)Находим отношение площадей:
S1/S2=((15rad15)/4)/((135rad5)/4)
S1/S2=(rad3)/9
Значится рисуем тупоугольный треугольник abc, в котором тупой угол c, а сторона ac=bc и ∠a=∠b
Из вершины b проводим высоту к продолженной стороне ac, т.е. высота лежит за пределами Δabc, точку пересечения с продолженной стороной обзовем k, получим высоту bk
Теперь проведём биссектрису из вершины b к стороне ac, в точке пересечения поставим f.
Получим угол между биссектрисой и высотой, т.е. ∠fbk=48°
Примем ∠fbc=x, тогда ∠a=∠b=2x
Чтобы найти ∠с нужно сначала найти ∠f, рассмотрим Δfbk:
Сумма трёх углов =180°, значит ∠f=180-90-48=42°
Теперь рассмотрим Δfbc и выразим ∠c:
∠c=180-42-x
∠c=138-x
Теперь возвращаемся к нашему исходному Δabc и составляем уравнение:
2х+2х+(138-х)=180
4х+138-х=180
3х=42
х=14
∠a=∠b=2x
Подставляем, получаем
∠a=∠b=28°
∠c=180-28-28
∠c=124
ответ: углы треугольника равны 28, 28 и 124 градуса