Треугольник АВС - равнобедренный ( по условию). значит по определению равнобедренного треугольника АВ=ВС. По св-ву медианы равнобедренного треугольника ВМ- биссектриса и высота, значит если ВМ- биссектриса, то угол АВМ = углу СВМ. для треугольников АВМ и СВМ - сторона ВМ- общая, следовательно треугольник АВМ = треугольнику СВМ ( по двум сторонам и углу между ними), т.к. ВМ- общая, АВ=ВС(по опред. равноб. треуг)., угол АВМ= углу СВМ(т.к. ВМ-биссектриса по св-ву равнб. треугольника). Что и требовалось доказать.
а) докажите, что EFMK - параллелограмм.
А к с и о м а 1.
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
С л е д с т в и е 1.
Через прямую и не лежащую на ней точку проходит плоскость и притом только одна.
Соединив отрезками данные точки по три:
А, В и С – получим ∆ АВС.
А, D и C – получим ∆ ADC
B, D и С – получим ∆ BDС
B, D и A – получим ∆ BDA.
Отрезок, соединяющий середины двух его сторон называется средней линией треугольника.
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
EF – средняя линия треугольника АВС и параллельна основанию АС по определению.
КМ – средняя линия треугольника АDC и параллельна основанию АС по определению.
EF=AC:2, KM=AC:2 ⇒ EF||KM и EF=KM
То же самое верно для КЕ и МF.
Если противоположные стороны четырехугольника параллельны и равны, то этот четырехугольник – параллелограмм.
------------------------------
б) найдите периметр EFMK, если AC = 6 см, BD = 8 см
КЕ=MF=BD:2=8:2=4
KM=EF=AC:2=6:2=3
P (KMFE)=2•(3+4)=14 см