1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
БИЛЕТ №19. 1.На листочке бумаги чертишь по линейке одну сторону. Обозначь, например конечные точки А и ВЦиркулем на линейке берешь размер второй стороны, в точку А ставишь иголочку циркуля. Карандашом циркуля проводишь дугу.Теперь берешь циркулем размер третьей стороны. Из точки В проводишь циркулем дугу. Где дуги пересеклись, поставь точку С. Это третья вершина твоего треугольника. Соедини точки А, В, С по линейке.А теперь подумай -если сумма длин сторон АС и ВС будет меньше или равна длине стороны АВ, разве твои дуги пересекутся? Попробуй для интереса. Нет, не пересекутся.Отсюда и делаем вывод ( для этого и задачу задали) -сумма двух сторон должна быть больше третьей стороны. 2.Теорема (Соотношение между сторонами и углами треугольника) . В произвольном треугольнике против большей стороны лежит больший угол. Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны АС. Докажем, что угол С больше угла В. Для этого отложим на луче АВ отрезокAD, равный стороне АС. Треугольник АСD - равнобедренный. Следовательно, Ð1 = Ð2. Угол 1 составляет часть угла С. Поэтому Ð1 < ÐC. С другой стороны, угол 2 является внешним углом треугольника ВСD. Поэтому Ð2 > ÐB. Следовательно, имеем ÐC > Ð1 = Ð2 > ÐB. Следствие: В произвольном треугольнике против большего угла лежит большая сторона. Докажем, что если в треугольнике АВС угол С больше угла В, то и сторона АВ больше стороны АС. Действительно, эти стороны не могут быть равны, так как в этом случае треугольник АВС был бы равнобедренным и, следовательно, угол С равнялся бы углу В. Сторона АВ не может быть меньше стороны АС, так как в этом случае, по доказанному, угол С был бы меньше угла В. Остается только, что сторона АВ больше стороны АС. 3.1) 2+3=5(см) - боковая сторона. 2) 5+2=7(см) - основание Проверка: 5х2=10, 10-3=7 Так же: х - основание у - боковая сторона у+2=х х+3=у2 у+2+3=у2 Так как чтобы из у получить у2 надо к у прибавить у, то (2+3)=у БИЛЕТ №201. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки). Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса. 2.Пусть Δ ABC – равнобедренный с основанием AB , и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB . Отсюда получаем, что Δ ACD = Δ BCD .Из равенства треугольников следует равенство соответствующих углов: ACD = BCD , ADC = BDC . Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника.Теорема доказана. 3.Если внешний угол А равен 120 => сам угол А = 60 (как смежные углы, т. е. 180-120). если угол А = 60 => угол В = 30 градусов. В прямоугольном треукгольнике напроитв угла в 30 градусов лежит катет равный половине гипотенузы. то есть. АВ = 2 * АС. =>2*АС + АС = 18.=> 3*АС = 18 => АС = 6 => АВ = 18 - 6 = 12БИЛЕТ №211.Возьми циркуль и выстави на нём длину чуть меньше отрезка. Иглу на начало отрезка, чертим окружность. Иглу на конец отрезка, чертим окружность. Окружности пересекутся в двух точках, соедини эти точки прямой. Прямая пересечёт середину заданного отрезка. 2.Пусть при пересечении прямых а и b секущей c сумма односторонних углов равна 180. Т. к. эти углы 3 и 4 смежные, то 3+4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые параллельны. 3.AO=MH, так как ОС и ЕН - медианы треугольников ABC и MKE. Так как углы С и Е равны и ВС=КЕ, то углы АСО и МЕН также равны. Так как углы В и К равны, то соответственно углы А и М равны, из этого следует, что треугольники АСО и МЕН равны по стороне и двум прилежащим к ней углам.
Вариант 2.
1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
этой стороне или меньше ее, сразу станет понятно.
Объяснение:
2.Теорема (Соотношение между сторонами и углами треугольника) . В произвольном треугольнике против большей стороны лежит больший угол. Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны АС. Докажем, что угол С больше угла В. Для этого отложим на луче АВ отрезокAD, равный стороне АС. Треугольник АСD - равнобедренный. Следовательно, Ð1 = Ð2. Угол 1 составляет часть угла С. Поэтому Ð1 < ÐC. С другой стороны, угол 2 является внешним углом треугольника ВСD. Поэтому Ð2 > ÐB. Следовательно, имеем ÐC > Ð1 = Ð2 > ÐB. Следствие: В произвольном треугольнике против большего угла лежит большая сторона. Докажем, что если в треугольнике АВС угол С больше угла В, то и сторона АВ больше стороны АС. Действительно, эти стороны не могут быть равны, так как в этом случае треугольник АВС был бы равнобедренным и, следовательно, угол С равнялся бы углу В. Сторона АВ не может быть меньше стороны АС, так как в этом случае, по доказанному, угол С был бы меньше угла В. Остается только, что сторона АВ больше стороны АС.
3.1) 2+3=5(см) - боковая сторона. 2) 5+2=7(см) - основание Проверка: 5х2=10, 10-3=7 Так же: х - основание у - боковая сторона у+2=х х+3=у2 у+2+3=у2 Так как чтобы из у получить у2 надо к у прибавить у, то (2+3)=у БИЛЕТ №201. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки). Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса.
2.Пусть Δ ABC – равнобедренный с основанием AB , и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB . Отсюда получаем, что Δ ACD = Δ BCD .Из равенства треугольников следует равенство соответствующих углов: ACD = BCD , ADC = BDC . Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника.Теорема доказана.
3.Если внешний угол А равен 120 => сам угол А = 60 (как смежные углы, т. е. 180-120). если угол А = 60 => угол В = 30 градусов. В прямоугольном треукгольнике напроитв угла в 30 градусов лежит катет равный половине гипотенузы. то есть. АВ = 2 * АС. =>2*АС + АС = 18.=> 3*АС = 18 => АС = 6 => АВ = 18 - 6 = 12БИЛЕТ №211.Возьми циркуль и выстави на нём длину чуть меньше отрезка. Иглу на начало отрезка, чертим окружность. Иглу на конец отрезка, чертим окружность. Окружности пересекутся в двух точках, соедини эти точки прямой. Прямая пересечёт середину заданного отрезка.
2.Пусть при пересечении прямых а и b секущей c сумма односторонних углов равна 180. Т. к. эти углы 3 и 4 смежные, то 3+4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые параллельны.
3.AO=MH, так как ОС и ЕН - медианы треугольников ABC и MKE. Так как углы С и Е равны и ВС=КЕ, то углы АСО и МЕН также равны. Так как углы В и К равны, то соответственно углы А и М равны, из этого следует, что треугольники АСО и МЕН равны по стороне и двум прилежащим к ней углам.