1. Точки К, Т и Р лежат попарно в одной плоскости, поэтому соединяем их. КТР - искомое сечение.
2. Пусть К - середина AD, Р - середина СС₁, Т - середина А₁В₁. 1) Т₁С - проекция прямой ТР на плоскость основания. ТР ∩ Т₁С = Е, - это точка пересечения прямой ТР с плоскостью основания. Точки Е и К принадлежат основанию, значит ЕК - след сечения на плоскости основания. ЕК ∩ CD = L KL - отрезок сечения. Точки L и Р лежат в одной плоскости, соединяем. PL - отрезок сечения. 2) Плоскость (АВС) пересекается с плоскостью (АА₁В₁) по прямой АВ. KL ∩ AB = F Точка F принадлежит плоскости (АА₁В₁) и точка Т тоже. FT ∩ AA₁ = M КМ и ТМ - отрезки сечения. 3) Плоскость (АА₁В₁) пересекается с плоскостью (ВВ₁С₁) по прямой ВВ₁. FT ∩ BB₁ = G. Точка G принадлежит плоскости (ВВ₁С₁) и точка Р тоже. GP ∩ B₁C₁ = N. NP и NT - отрезки сечения. KMTNPL - искомое сечение.
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———
Объяснение:
КТР - искомое сечение.
2. Пусть К - середина AD, Р - середина СС₁, Т - середина А₁В₁.
1) Т₁С - проекция прямой ТР на плоскость основания.
ТР ∩ Т₁С = Е, - это точка пересечения прямой ТР с плоскостью основания.
Точки Е и К принадлежат основанию, значит ЕК - след сечения на плоскости основания.
ЕК ∩ CD = L
KL - отрезок сечения.
Точки L и Р лежат в одной плоскости, соединяем.
PL - отрезок сечения.
2) Плоскость (АВС) пересекается с плоскостью (АА₁В₁) по прямой АВ.
KL ∩ AB = F
Точка F принадлежит плоскости (АА₁В₁) и точка Т тоже.
FT ∩ AA₁ = M
КМ и ТМ - отрезки сечения.
3) Плоскость (АА₁В₁) пересекается с плоскостью (ВВ₁С₁) по прямой ВВ₁.
FT ∩ BB₁ = G.
Точка G принадлежит плоскости (ВВ₁С₁) и точка Р тоже.
GP ∩ B₁C₁ = N.
NP и NT - отрезки сечения.
KMTNPL - искомое сечение.