1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
Теорема об отшение площадей подобных треугольников:Для тех кто не знает треугольники называются подобными, если 1. Два угла 1 треугольника соответственно равны 2 углам другого треугольника 2. Две стороны 1 треугольника пропорциональны 2 сторонам другого треугольника и углы, заключенные между сторонами, равны. 3. Три стороны 1 треугольника пропорциональны 3 сторона другого треугольника.Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия.Пусть треугольники ABC и А1В1С1 подобны, причем коэффициент подобия равен k O, обозначим буквами S и S1 площади этих треугольников. Так как A=A1, тоS/S1 = AB*AC/A1B1*A1C1(по тереме об отношении площадей треугольника). По формулам имеем: АВ/А1В1 = k, AC/A1C1 = kпоэтомуS/S1 = k2Теорема доказана.
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
1. Два угла 1 треугольника соответственно равны 2 углам другого треугольника
2. Две стороны 1 треугольника пропорциональны 2 сторонам другого треугольника и углы, заключенные между сторонами, равны.
3. Три стороны 1 треугольника пропорциональны 3 сторона другого треугольника.Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия.Пусть треугольники ABC и А1В1С1 подобны, причем коэффициент подобия равен k O, обозначим буквами S и S1 площади этих треугольников. Так как A=A1, тоS/S1 = AB*AC/A1B1*A1C1(по тереме об отношении площадей треугольника). По формулам имеем: АВ/А1В1 = k, AC/A1C1 = kпоэтомуS/S1 = k2Теорема доказана.