Векторларды 51-суреттегідей кескіндеңдер. a) a + b, a+c, c+a век- торларының қосындысына; ә) а – Б, a - C, с – а векторларының айырымына тең болатын векторларды салыңдар.
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Объяснение:
мне лень было делать на листочке:")