Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Рисуем обычную треугольню пирамиду. В основании тр-к АВС и вершина Д. На середине ВД отмечаем т.М.Соединяем А и М, С и М. На середине АС ставим т. К , соединим т К и т М. Чертеж готов.В правильном тетраэдре все ребра равны, обозначим ребро "а", все грани равны.Значит, чтобы найти полную поверхность тетраэдра надо найти площадь одного тр-ка и умножить на 4. АМ и СМ- высоты равност-х тр-ков, АМ=СМ=аV3/ 2, (V-обозначение корня), МК-высота равноб-го тр-ка АМС(и медиана), из тр-ка АМК АК=а/2 КМ^2=AM^2-AK^2=3a^2/4-a^2/4=2a^2 /4, KM=aV2 /2, S(AMC)=1/2*a*aV2 /2, 9=a^2 /4, a^2=36, a=6/
S(ABC)=1/2*6*6*sin60=18*V3 /2=9V3, тогда S(полной пов-ти)=4*9V3=36V3
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Рисуем обычную треугольню пирамиду. В основании тр-к АВС и вершина Д. На середине ВД отмечаем т.М.Соединяем А и М, С и М. На середине АС ставим т. К , соединим т К и т М. Чертеж готов.В правильном тетраэдре все ребра равны, обозначим ребро "а", все грани равны.Значит, чтобы найти полную поверхность тетраэдра надо найти площадь одного тр-ка и умножить на 4. АМ и СМ- высоты равност-х тр-ков, АМ=СМ=аV3/ 2, (V-обозначение корня), МК-высота равноб-го тр-ка АМС(и медиана), из тр-ка АМК АК=а/2 КМ^2=AM^2-AK^2=3a^2/4-a^2/4=2a^2 /4, KM=aV2 /2, S(AMC)=1/2*a*aV2 /2, 9=a^2 /4, a^2=36, a=6/
S(ABC)=1/2*6*6*sin60=18*V3 /2=9V3, тогда S(полной пов-ти)=4*9V3=36V3