В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Векторы p→ и n→ взаимно перпендикулярны, они одинаковой длины: 3 см. Определи скалярное произведение векторов a→ и b→, которые выражены следующим образом:

a→=2⋅p→−2⋅n→, b→=4⋅p→+2⋅n→.

a→⋅b→=

Показать ответ
Ответ:
lol1044
lol1044
18.01.2024 14:19
Для определения скалярного произведения векторов a→ и b→, мы должны умножить соответствующие компоненты этих векторов и затем сложить полученные произведения.

Для начала, давайте найдем значения векторов a→ и b→, используя данные формулы:

a→=2⋅p→ - 2⋅n→
b→=4⋅p→ + 2⋅n→

Поскольку у нас есть информация о векторах p→ и n→, мы можем подставить их значения в данные формулы:

a→=2⋅(3 см) - 2⋅(3 см)
b→=4⋅(3 см) + 2⋅(3 см)

Выполняя вычисления, получим:

a→=6 см - 6 см
b→=12 см + 6 см

a→=0 см
b→=18 см

Теперь, когда у нас есть значения векторов a→ и b→, мы можем рассчитать скалярное произведение a→⋅b→. Для этого нужно умножить соответствующие компоненты векторов и сложить полученные произведения:

a→⋅b→ = (0 см)⋅(18 см)

Умножение нуля на любое число дает ноль, поэтому:

a→⋅b→ = 0 см

Таким образом, скалярное произведение векторов a→ и b→ равно 0 см.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота