Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1 значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1
значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
S=1/2*АВ*СЕ=1/2*2*3/корень из 3=3/корень из 3
V=1/3*S*h=1/3* 3/корень из 3*1=1/корень из 3
Примем сторону основания за а.
Проекция бокового ребра на основание равна (2/3)h = (2/3)*(a√3/2) =
a√3/3.
Высота H пирамиды как катет, лежащий против угла 60 градусов, равна:
H = (2/3)h*tg 60° = (a√3/3)*√3 = a.
Площадь основания So = a²√3/4.
Используем формулу объёма пирамиды:
V = (1/3)SoH = (1/3)(a²√3/4)*a = a³√3/12.
Зная, что V = 48, находим сторону основания.
a = ∛(12V/√3) = ∛ (12*48)/√3 = 4∛(9/√3) =4∛(√27) = 4√3.
Периметр основания Р = 3а = 12√3.
Осталось найти апофему А.
Находим боковое ребро: L = (2/3)h/cos 60° = (a√3/3)/(1/2) = 2a√3/3.
Подставим значение а: L = 2*4√3*√3/3 = 8.
Тогда апофема А = √(L² - (a/2)²) = √(64 - 12) = √52 = 2√13.
Приходим к ответу: Sбок = (1/2)РА = (1/2)* 12√3*2√13 = 12√39 кв.ед.