Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
мде)
Дано: треугольник ABC, AB = 9 см, AC = 40 см
Найти: BC, углы B и C.
Решение: 1) BC^2 = AB^2 + AC^2 - по теореме Пифагора
BC = кореньквадратныйиз(9^2 + 40^2) = кореньквадратныйиз(81 + 1600) = корень квадратный из(1681) = 41
2) Углы можно найти многими Так например:
sin B = AC / BC = 40 / 41 = 0,9756
sin C = AB / BC = 9 / 41 = 0,2195
Угол B = 77.32
Угол С = 12.68
Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
32 - 100
x - 60
x = 19,2, округляем = 19
68 - 100
x - 60
x = 40,8 , округляем = 41
Получаем такие значения углов
B = 77 градусов 19 минут = 77°19'
C = 12 градусов 41 минута = 12°41'
=)
Касательная СЕ к первой окружности - хорда второй, т.к. соединяет две ее точки С и Е.
Соединим центр В второй окружности с С и проведем к СЕ перпендикуляр ВМ.
Перпендикуляр из центра окружности к хорде делит ее пополам. ⇒ СМ=ЕМ=18:2=9. Треугольник СМВ прямоугольный.
По т.Пифагора ВМ=√(СВ²-СМ²)= √(225-81)=12
В первой окружности проведем радиус в точку касания С. ∠ОСЕ =90°(свойство радиуса к точке касания).
Из О проведем к СВ отрезок ОК ⊥ СВ. ∆ СОК - прямоугольный. Сумма острых углов прямоугольного треугольника равны 90°.
∠МВС+∠МСВ=90°. ∠ОСВ+∠МСВ=90°, ⇒ ∠СОК=∠ВСМ. sin∠МСВ=МВ:СВ=12/15=0,8. Синус равного ему ∠СОК=0,8.
Радиус СО=СК/sin∠COK= 9,375 (ед. длины)