Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
Верно.
Объяснение:
Это признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
Значит b║α. Что и требовалось доказать.