Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
Пусть А - точка, не принадлежащая плоскости α.
АВ = 15 см и АС = 17 см - наклонные, АН - перпендикуляр к плоскости α..
Тогда ВН и СН - проекции наклонных на плоскость.
Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная.
Пусть ВН = х, СН = х + 4
ΔАВН и ΔАСН прямоугольные. По теореме Пифагора выразим из них АН:
АН² = АВ² - ВН² = 225 - х²
АН² = АС² - СН² = 289 - (х + 4)²
225 - х² = 289 - (х + 4)²
225 - x² = 289 - x² - 8x - 16
8x = 48
x = 6
ВН = 6 см
СН = 10 см
Объяснение:
надеюсь то)
т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции,
отрезок касательной будет высотой трапеции (EF).
радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны,
площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° )
высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника)
отрезки касательных к окружности, проведенных из одной точки, равны))