пусть авс-прямоугольный треугольник. тогда гипотенуза ас=17 см. пусть медиана выходит из точки а пусть аm — медиана(тогда bm=cm) обозначим катет bc через y, ac через x, тогда bm=cm=y\2,по теореме пифагора получаем систему и з двух уравнений первое х^2+y^2=17^2 второе x^2+(y\2)^2=15^2 отняв от первое второе получаем 3\4*(y^2)=64 y^2=256\3 y=(+\-)16\корень(3)=(+\-)16\3*корень(3) нас удовлетворяет только положительный корень(длина катета не может быть отрицательным числом), так что y=16\3*корень(3) подставив найденное значение y в первое уравнение находим х х^2+y^2=17^2 х^2+256\3=17^2 х^2=611\3 х=(+\-)корень(611\3) (нас удовлетворяет только положительное значение по той же причине что и выше) х=корень(611\3)ответ корень(611\3) и 16\3*корень(3) катеты треугольника
1)треугольники alk=amn ( по 3 сторонам ak=an ( в равнобедренном треугольнике),al=am ( а- середина стороны), lm=mn ( противоположные стороны в параллелограмме это значит, что углы kla=nma, но в параллелограмме противоположные углы также равны, значит kla=nma=lkn=mnk. в параллелограмме сумма углов равна 360 градусов. из этого следует, что 360/4=90.
значит kla=nma=lkn=mnk=90 градусам, значит наш параллелограмм - прямоугольник.
2)
так как ромб - это симметричная фигура
следует, что относительно диагоналей ac и вd происходит симметрия =>
∆ abc = ∆ авсd
из первого пункта было сказано, что epkt является прямоугольником
значит, прямоугольник epkt симметрично накладывается на четырёхугольник meth, которые вследствие симметричности является также прямоугольником. а значит, весь четырехугольник мрkh является прямоугольником.
для точности докажем, что точки р и м, к и н симметричны относительно диагонали ас
∆ аре = ∆ аем - по катету и острому углу ( угол вас = угол саd - по свойству ромба ; ае - общая сторона )
пусть авс-прямоугольный треугольник. тогда гипотенуза ас=17 см. пусть медиана выходит из точки а пусть аm — медиана(тогда bm=cm) обозначим катет bc через y, ac через x, тогда bm=cm=y\2,по теореме пифагора получаем систему и з двух уравнений первое х^2+y^2=17^2 второе x^2+(y\2)^2=15^2 отняв от первое второе получаем 3\4*(y^2)=64 y^2=256\3 y=(+\-)16\корень(3)=(+\-)16\3*корень(3) нас удовлетворяет только положительный корень(длина катета не может быть отрицательным числом), так что y=16\3*корень(3) подставив найденное значение y в первое уравнение находим х х^2+y^2=17^2 х^2+256\3=17^2 х^2=611\3 х=(+\-)корень(611\3) (нас удовлетворяет только положительное значение по той же причине что и выше) х=корень(611\3)ответ корень(611\3) и 16\3*корень(3) катеты треугольника
1)треугольники alk=amn ( по 3 сторонам ak=an ( в равнобедренном треугольнике),al=am ( а- середина стороны), lm=mn ( противоположные стороны в параллелограмме это значит, что углы kla=nma, но в параллелограмме противоположные углы также равны, значит kla=nma=lkn=mnk. в параллелограмме сумма углов равна 360 градусов. из этого следует, что 360/4=90.
значит kla=nma=lkn=mnk=90 градусам, значит наш параллелограмм - прямоугольник.
2)
так как ромб - это симметричная фигура
следует, что относительно диагоналей ac и вd происходит симметрия =>
∆ abc = ∆ авсd
из первого пункта было сказано, что epkt является прямоугольником
значит, прямоугольник epkt симметрично накладывается на четырёхугольник meth, которые вследствие симметричности является также прямоугольником. а значит, весь четырехугольник мрkh является прямоугольником.
для точности докажем, что точки р и м, к и н симметричны относительно диагонали ас
∆ аре = ∆ аем - по катету и острому углу ( угол вас = угол саd - по свойству ромба ; ае - общая сторона )
значит, ав=сд