ΔABC; медианы AA_1 и BB_1; пересекаются в точке G. Через A_1 проводим прямую, параллельную BB_1, пересекающую AC в точке D. Угол ACB пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках B_1D:DC=BA_1:A_1C=1:1⇒B_1D=DC⇒AB_1=2B_1D.
Угол CAA_1 пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках AG:GA_1=AB_1:B_1D=2:1.
Таким образом, медиана BB_1 в точке пересечения разделила медиану AA_1 в отношении 2 к 1, считая от вершины. Поскольку мы взяли две произвольные медианы, доказано, что каждая из них разделит каждую в отношении 2 к 1. Поэтому во-первых они пересекаются в одной точке, а во-вторых, делятся точкой пересечения в отношении 2 к 1, считая от вершины.
Замечание для продвинутых (21+))) Знающие теорему Чевы вопрос о том, что медианы пересекаются в одной точке, не задают. А знающие к тому же теорему Менелая, не спрашивают и про отношение 2 к 1. А знающие теорему Ван-Обеля просто умирают при этом со смеху, потому что для них решение прокручивается устно в голове за 0,5 секунды максимум
Так как точки А, В, С не лежат на одной прямой, существует единственная плоскость а, проходящая через эти точки. То есть, а=(АВС).
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.
Угол ACB пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках B_1D:DC=BA_1:A_1C=1:1⇒B_1D=DC⇒AB_1=2B_1D.
Угол CAA_1 пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках
AG:GA_1=AB_1:B_1D=2:1.
Таким образом, медиана BB_1 в точке пересечения разделила медиану AA_1 в отношении 2 к 1, считая от вершины. Поскольку мы взяли две произвольные медианы, доказано, что каждая из них разделит каждую в отношении 2 к 1. Поэтому во-первых они пересекаются в одной точке, а во-вторых, делятся точкой пересечения в отношении 2 к 1, считая от вершины.
Замечание для продвинутых (21+)))
Знающие теорему Чевы вопрос о том, что медианы пересекаются в одной точке, не задают. А знающие к тому же теорему Менелая, не спрашивают и про отношение 2 к 1. А знающие теорему Ван-Обеля просто умирают при этом со смеху, потому что для них решение прокручивается устно в голове за 0,5 секунды максимум
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.