Hi! My name is Jonathan. I have got many friends. But Joshua is my best friend. He is two years older than me. We have the common interests. Joshua is a true friend. He is very kind and merry. We spend much time together. Sometimes he helps me to do my homework. We often play different games on the computer together. We also like to spend our free time outside. We ride our bicycles and spend time in the fresh air. The word "friend " has an ending "end " , so I hope our friendship will never end .
Задачу можно очень сильно упростить. Точка К - центр грани А1B1C1D1 - принадлежит прямым B1D1 и A1C1, то есть - обеим плоскостям. Точно так же центр грани ABB1A1 - точка М принадлежит A1B и B1A, то есть опять таки обеим плоскостям. Таким образом КМ - линия пересечения плоскостей. Треугольники А1КМ и В1КМ - равносторонние. Если считать, что их сторона равна 1, то ребро куба равно √2, а высота треугольника А1КМ (и В1КМ - тоже) равна √3/2;То есть если обозначить косинус угла между перпендикулярами к КМ из точек A1 и В1 как х, то по теореме косинусов(√2)^2 = (√3/2)^2 + (√3/2)^2 - 2*(√3/2)*(√3/2)*x; x = -1/3; Конечно, знак тут никакой роли не играет, просто выбранный для вычисления треугольник - тупоугольный. Дополнительный к нему угол имеет косинус 1/3; это просто вопрос выбора. На самом деле, самое простое решение этой задачи получается, если применить координатный метод. Пусть Р - середина А1В1. Пусть начало координат лежит в ней, ось Z проходит через точку М, Х - через точку К, Y - через точки А1 и В1.Здесь я принимаю ребро куба равным 2, то есть РА1 = РВ1 = РК = РМ = 1; Плоскость ВА1С1 - то есть плоскость А1КМ проходит через точки К = (1,0,0); А1 = (0,-1,0); М = (0,0,-1); уравнение такой плоскости x - y - z = 1; (можете проверить, что все три точки удовлетворяют этому уравнению)Отсюда нормальный вектор к этой плоскости q = (1,-1,-1);модуль этого вектора равен √3Плоскость АВ1С1 - то есть плоскость В1КМ проходит через точки К = (1,0,0); В1 = (0,1,0); М = (0,0,-1); уравнение такой плоскости x + y - z = 1;Отсюда нормальный вектор к этой плоскости l = (1, 1,-1);модуль этого вектора тоже равен √3;осталось вычислить угол между нормальными векторами (равный, очевидно, углу между плоскостями), для чего надо их скалярно перемножить и разделить на модули. Скалярное произведение равно ql = 1 - 1 + 1 = 1; а произведение модулей равно 3, откуда косинус угла равен 1/3.Видно, что тут ответ получается сам собой. Но большое преимущество такого метода в том, что им легко получать углы между плоскостями и в более сложных случаях, когда применение простых геометрических методов затруднительно.