Вершины B и C треугольника ABC лежат в плоскости бета вершина А ей не принадлежит. Каково взаимное расположение прямой проходящей через середины отрезков AB и AC и плоскости бета? Выполнить чертёж обосновать ответ
Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
трапецию можно вписать окружность;
MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O).
M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции .
По условию задачи трапеция описана окружности , следовательно :
AD+BC =(AB +CD) = P/2 =20/2 =10.
AB =CD =5 ;
S =(AB +BC) /2 *H ;
20 =5*H ⇒ H =4.
Проведем BE ⊥AD и CF ⊥ AD,
AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 .
AD -BC =2*3 =6.
{ AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2.
ΔAOD подобен ΔCOB :
BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) .
2/8 =ON/ (4 -ON) ⇒ON =0,8.
ответ: 0,8.