Вершины правильного треугольника авс с периметром 18 см лежат на сфере. найдите площадь сферы, если расстояние от ее центра до плоскости треугольника = 2
Если хорошо посмотреть на правильный (равносторонний ) Δ АВС и точку О (центр сферы. то увидишь правильную пирамиду, у которой боковое ребро - радиус сферы. Высота пирамиды =2 и сторона основания = 6 Надо найти боковое ребро ( оно = R и S = 4πR^2) Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора m^2 = 6^2 - 3^2 = 36 - 9 = 27 m = 3√3 Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы. Ищем площадь сферы. S = 4π R^2 = 4π(2√3/3)^2=16π/3
Надо найти боковое ребро ( оно = R и S = 4πR^2)
Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора
m^2 = 6^2 - 3^2 = 36 - 9 = 27
m = 3√3
Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы.
Ищем площадь сферы.
S = 4π R^2 = 4π(2√3/3)^2=16π/3