Через вершину выпуклого n-угольника проходит d = n*(n-3)/2 диагоналей. Доказать это просто: 1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине. Но к двум соседним вершинам - это стороны, а не диагонали. Поэтому из каждой вершины выходит n-3 диагонали. Вершин всего n, поэтому получается n*(n-3) диагоналей. 2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА. Поэтому количество диагоналей нужно разделить пополам. Получается d = n*(n-3)/2 1) n = 4, d = 4*1/2 = 2 2) n = 5, d = 5*2/2 = 5 3) n = 6, d = 6*3/2 = 9 4) n = 10, d = 10*7/2 = 35
Доказать это просто:
1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине.
Но к двум соседним вершинам - это стороны, а не диагонали.
Поэтому из каждой вершины выходит n-3 диагонали.
Вершин всего n, поэтому получается n*(n-3) диагоналей.
2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА.
Поэтому количество диагоналей нужно разделить пополам.
Получается d = n*(n-3)/2
1) n = 4, d = 4*1/2 = 2
2) n = 5, d = 5*2/2 = 5
3) n = 6, d = 6*3/2 = 9
4) n = 10, d = 10*7/2 = 35
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)