вертикальная башня высотой 15 м Из точки F на поверхности земли под углом 30 градусов Найдите расстояние от точки F до основания башни и до самой высокой точки башни
треугольник с углами 30° и 120° -это равнобедренный треугольник))
две медианы равнобедренного треугольника (проведенные к боковым сторонам) равны... осталось найти медиану к основанию (m1) и медиану к боковой стороне (m2=m3)
составленный треугольник тоже получится равнобедренным...
его площадь можно найти по формуле Герона...
а можно найти (по теореме косинусов) косинус угла между медианами, найти (используя основное тригонометрическое тождество) синус этог угла и найти площадь по формуле S=0.5ab*sin(x)
1-cos(x) = 1/14
cos(x) = 13/14
sin(x) = √27 / 14
S = (1/2)*(63/4)*(√27 / 14) = 27√3 / 16 (ответ такой же))
ответ: S=
Объяснение:
треугольник с углами 30° и 120° -это равнобедренный треугольник))
две медианы равнобедренного треугольника (проведенные к боковым сторонам) равны... осталось найти медиану к основанию (m1) и медиану к боковой стороне (m2=m3)
составленный треугольник тоже получится равнобедренным...
его площадь можно найти по формуле Герона...
а можно найти (по теореме косинусов) косинус угла между медианами, найти (используя основное тригонометрическое тождество) синус этог угла и найти площадь по формуле S=0.5ab*sin(x)
1-cos(x) = 1/14
cos(x) = 13/14
sin(x) = √27 / 14
S = (1/2)*(63/4)*(√27 / 14) = 27√3 / 16 (ответ такой же))
доказано
Объяснение:
нарисуем треугольник АВС
где угол А =45°и нарисуем серединную высоты к стороне АВ
АН=НВ=НD потому что прямоугольный треугольник АНD равнобедренный
проведём линию DB
линия DB перпендикулярна к стороне DC , потому что углы ADH и HDB по 45°,что значит угол BDC 180°-45°-45°= 90°
из этого выходит что треугольник BDC прямоугольный
сторона ВС является гипотенузой этого треугольника , сторона DC катетом
в прямоугольном треугольнике гипотенуза всегда длиннее катетов , это значит ВС>CD
доказано