Використовуючи всі дані,що на рисунку, оберіть правильні твердження А)∆АВС- рівнобедриний; Б)∆АВС- прямокутний; В)<1- зовнішній кут ∆АВС Г)<2- зовнішній кут ∆АВС
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна ВС+АD=16·2=32 Большее основание равно AD=32-BC=32-6=26 Отрезок НD- меньший из двух, на которые высота делит основание АД. Полуразность оснований равна HD=(26-6):2=10 ответ: Отрезок HD=10
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10
Объяснение:
Если в осевом сечении цилиндра лежит квадрат, значит, радиус основания и высота у него равны.
Зная, что гипотенуза квадрата равна 8 см, обозначаем катеты прямоугольного треугольника через Х:
По теореме Пифагора находи значение Х:
2Х2= 64;
Х2 = 32;
Х = √32.
Площадь боковой поверхности цилиндра равна произведению площади основания на высоту:
S = П * D * Н.
П = 3,14;
D и H равны √32.
Находим площадь боковой поверхности цилиндра:
S = 3,14 * √32 * √32 = 3,14 * 32 = 100,48 см2.
ответ: Площадь боковой поверхности цилиндра равна 100,48 см2