Рисуете рисунок. У меня основание AC. По условию 2d=ac, ac=4r. Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника. S=1/2*h*a S=p*r а-сторона треугольника, р-полупериметр. Значит p*r=1/2*h*a Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r. p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r * Можно разделить на 4r и умножить на 2 обе части. Слева останется r+5, а справа Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника.
S=1/2*h*a
S=p*r
а-сторона треугольника, р-полупериметр.
Значит p*r=1/2*h*a
Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r.
p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r *
Можно разделить на 4r и умножить на 2 обе части.
Слева останется r+5, а справа
Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.